Buffers and Accessors in Depth

Find out how to use Buffers and Accessors in Depth

intel.

Buffers and Accessors

* Agenda
« Buffers and Accessors In Depth
« Buffer Creation methods
* Buffer Properties: use host ptr, set final data, set write back
* Sub buffers
* Accessors and its Properties

e Hands On

« Buffer Properties
* Sub Buffers

intel >

DPC++ Essentials

Learning Objectives

Utilize Buffers and Accessors to apply control over data
movement.

Determine appropriate usage of the following buffer properties:
use host ptr, set final data and set write data

Split buffer into two sub buffers create kernels concurrently

Explain host accessors and the different use cases of host
accessors

DPC++ Essentials |nte|. 3

Buffer Memory Model

Buffers encapsulate data shared
between host and device.

queue q;
std::vector<int> v(N, 10);
{

buffer buf(v);

Accessors provide access to data
g.submit([&](handler& h) {

stored in buffers and create data
dependences in the graph.

accessor a(buf, h , write only);
h.parallel for(N, [=](auto i) { a[i] = i; });
})s

Unified Shared Memory (USM))

provides an alternative pointer-
based mechanism for managing
memory

for (int 1 = 0; 1 < N; i++) std::cout << v[i] << " "

DPC++ Essentials |nte|

Accessor Modes

DPC++ Essentials

Access Mode

read_only

write_only

read_write

Description

Read only Access

Write-only access. Previous
contents not discarded

Read and Write access

intel.

)

DPC++ Code Anatomy

void dpcpp code(int* a, int* b, int* c) {
// Setting up a device queue
queue q;
Setup buffers for input and output vectors
buffer buf a(a, range<1>(N));
buffer buf b(b, range<1>(N));
buffer buf c(c, range<1>(N));
//Submit command group function object to the queue
q.submit([&](handler &h){
device accessors to buffers allocated in global memory

accessor A(buf_a, h, read_only);
accessor B(buf_b, h, read_only);
accessor C(buf_c, h, write only);
the device kernel body as a lambda function

h.parallel for(range<1>(N), [=](auto i){

C[i] = A[i] + B[i];
})

Kernel invocations Kernel is invoked Kernel invocation D :
are executed in for each element of has access to the ol
parallel the range invocation id

DPC++ Essentials

Step 1: create a device queue
(developer can specify a device type via
device selector or use default selector)

Step 2: create buffers
(represent both host and
device memory)

Step 3: submita command group for
(asynchronous) execution

Step 4: create accessors
describing how buffer is used on
the device

Step 5: specify kernel function and
launch parameters (e.g. group size)

Step 6: specify code to run on
the device

The results are copied to vector c at buf_c buffer destruction

intel.

Buffer Creation

Buffer Class: Template class with three arguments
* Type of the Object
* Dimensionality of the Buffer

* Optional C++ Allocator

The choice of buffer creation depends on how the buffer
needs to be used as well as programmer's coding
preferences

DPC++ Essentials |nte|. 7

Buffer Creation

Lets look at a simple DPC++ code example and see different ways of buffer

creation

Buffer for Vectors

Buffer for std::array

Buffer from a host

pointer

DPC++ Essentials

// Create a buffer of ints from an input iterator

std::vector<int> myVec;

buffer bl{myVec};
buffer b2{myVec.begin(), myVec.end()};

// Create a buffer of ints from std::array

std::array<int,42> my_data;

buffer b3{my data};

// Create a buffer of 4 doubles and initialize it from a host pointer
double myDoubles[4] = {1.1, 2.2, 3.3, 4.4};

buffer b4{myDoubles, range{4}};

Buffer: use host ptr

Use host ptrrequires the buffer
to not allocate any memory on
the host

int main() {

queue q;
int myInts[42];
Buffer should use the memory // create a buffer of 42 ints, initialize
pointed to by a host pointer that //with a host pointer,
1S passed to the constructor. // and add the use_host_pointer property

buffer bl(myInts, range(42), property::use _host ptr{});

This option can be useful when
the program wants full control
over all host memory allocations

DPC++ Essentials

intel.

9

Buffer Properties: use host ptr

This property requires the buffer to not allocate any memory on the host, Instead, the buffer should
use the memory pointed to by a host pointer that is passed to the constructor.

queue q;

| e std::vector<float> a(N, 10.0f);
aandb std::vector<float> b(N, 20.0f);

{

Use buffer buf a(a,{property::buffer::use host ptr()});
property::use_host_ptr

0 buffer buf b(b,{

roperty: :buffer::use_host ptr()});

g.submit([&](handler& h) {
//create Accessors for a and b
accessor A(buf_a,h);
Submit the work accessor B(buf_b,h,read only);
h.parallel for(R, [=](auto i) { A[i] += B[1] ; });
1)

DPC++ Essentials

Buffer: set final data

The "set final data method of a
buffer is the way to update host
memory however the buffer was

created. buffer my buffer(my_data);

When the buffer is destroyed, data my_buffer-

queue q;

will be written to the host using the q.submit([&](handler &h) {

supplied location. accessor my_accessor(my_buffer, h);
Call the set final datato the h.parallel for(N, [=](id<1> i) {
created shared ptr where the values my_accessor[i]*=2;

will be written back when the buffer 1)

gets destructed 1)

DPC++ Essentials |nte| 1

Buffer: set write back

We can control whether writeback
occurs from the device to the host

by calling the set_write_back
method. buffer my buffer(my data);

my_ buffer.set write back(false);
g.submit([&] (handler &h) {

Call the set_write back method to accessor my_accessor(my_buffer, h);
control the data to be written back
to the host from the device.

h.parallel for(N, [=](id<1> i) {

my_ accessor[i]*=2;
1)

Setting it to false will not update b

the host with the updated values

DPC++ Essentials

intel.

12

Buffer: sub buffers

A sub-buffer requires three
things, a reference to a parent
buffer, a base index, and the
range of the sub-buffer.

The main advantage of using
the sub-buffers is different
kernels can operate on different
sub buffers concurrently.

Sub Buffer for one dimensional buffer

Sub buffer for a 2-dimensional buffer

DPC++ Essentials

buffer B(data, range(N));

buffer<int> B2(B, 32, range{ N / 2 });

buffer<int, 2> ble{range{2, 5}};

buffer bll{ble, id{©, ©}, range{l, 5}};

buffer b12{ble, id{1, 0}, range{1l, 5}};

intel.

13

Sub Buft "
u u e rS const int N = 64; const int numl 2; const int num2 = 3;

int data[N];
for (int i = 0; i < N; i++) data[i] i; for (int 1 = 9; 1 < N; i++) std::cout << data[i] << " ";

BUffer for VeCtOFS buffer B(data, range(N));

buffer<int> B1(B, @, range{ N / 2 });

Create sub buffers B1

buffer<int> B2(B, 32, range{ N / 2 });
and B2 queue q1;
gl.submit([&](handler& h) {

accessor al(B1l, h);

SmeIt q1 USing B1 h.parallel for(N/2, [=](auto i) { al[i] *= numl; });

})s
queue g2;

g2.submit([&](handler& h) {

Submit q2 USing B2 accessor a2(B2, h);
h.parallel_for(N/2, [=](auto i) { a2[i] *= num2; });

})s
Create HOSt accessors host_accessor bl(B1l, read_only);

host_accessor b2(B2, read_only);

return 0;

DPC++ Essentials

Asynchronous Execution

Host
#include <CL/sycl.hpp>
constexpr int N=16;
using namespace sycl;
int main() {
std::vector<int> data(N);
{
buffer A(data);
queue q;
g.submit([&](handler& h) {
Enqueues ii\¢/7 accessor out(A, h, write only);
kernel to h.parallel for(N, [=](auto 1) {
graph, and out[i] = 1i;
keeps
going

DPC++ Essentials

Graph

Graph executes
asynchronously
to host program

‘,A

Kernel

¢A

intel. s

Asynchronous Execution

int main() {
auto R = range<1>{ num };
buffer<int> A{ R }, B{ R };
queue q;

[a. submit) [&](handler& h) {

accessor out(A, h, write only);
h.parallel for(R, [=](id<1> i) {
out[i] = i; }); });

g.submitf [&] (handler& h) {
accessor out(A, h, write_only);
h.parallel for(R, [=](id<1> i) {

out[i] = 15 1) 1)
[&](handler‘& h) {

accessor out(B, h, write only);
h.parallel for(R, [=](id<1> i) {
out[i] = i; }); });

[&](handler& h) {

accessor in(A, h, read only);

accessor inout(B, h);

h.parallel for(R, [=](id<1> i) {
inout[i] *= in[i]; }); });

DPC++ Essentials

Automatic data and control
dependence resolution!

“A

B
Kernel 1 ‘
l A Kernel 3
Kernel 2
B
\A
§ = data
dependence
Kernel 4
\
Program
completion

intel.

16

Synchronization — Host Accessors

Buffer takes ownership of the
#include <CL/sycl.hpp>

using namespace sycl; data stored in vector.

constexpr int N = 16;

int main() {
std::vector<double> v(N, 10);

queue q; Creating host accessor is a

- -
Lounie o (o) SR blocking call and will only return

accessor a(buf, h)

h.parallel for(N, [=](auto i) { after all enqueued kernels that
al[i] -= 2;
})].f); modify the same buffer in any

queue completes execution and

for (int 1 = 0; 1 < N; i++) _ :
std::cout << b[i] << "\n"; the data is available to the host

return 0;

} via this host accessor.

DPC++ Essentials |nte|.

17

Hands-on Coding on Intel

Buffers and Accessors

Dev(Cloud

intel. s

Buff
3U £

DPC++ Essentials

Summary

n this module you learned:

ers and Accessors in Depth

ers

data ar

d set write data

ers and

now to create and use Sub

oroperties and when to use host ptr,
set final

Sub buff
ouffers

How to create Accessors, host accessors and
nitialize buffer data using host accessors

intel.

